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We present a theoretical study and a numerical simulation of the formation and development of the
cathode region (cathode-fall and negative-glow ones) in CO, and N, discharges from the inception of the
discharge to its stationary state. The model is a self-consistent one: the distribution of the electric field
is found from the charge carriers and the hydrodynamic moment equations (density, velocity, energy) are
solved by a sophisticated flux-corrected transport method. The ionization and excitation source terms
are calculated using an electron-energy distribution function which takes into account the electron-
density gradient and the local electric field. The results show that this choice is more realistic in
representing the spatiotemporal evolution of the cathode region. Our theoretical results are compared
with the experimental ones obtained by other authors and a good agreement is observed concerning the
current intensity and the spatial distribution of light in the cathode region in N,.

PACS number(s): 52.25.Fi, 52.65.+z, 52.80.—s

I. INTRODUCTION

The conditions existing in the cathode region greatly
influence the electron behavior that no longer depends on
the value of the local electric field. The electron gas
evolves in nonhydrodynamic conditions, and the energy
reached by an electron in space 7 and time ¢ is not instan-
taneously lost by collisions. Such a behavior, which
greatly differs from the classic hydrodynamic situation,
has been theoretically studied by different means.

Monte Carlo-like methods ‘“‘dealing with particles”
have been greatly developed. Boeuf and Marode [1] de-
scribed a Monte Carlo method for studying the steady-
state behavior of charged species in helium under the
influence of a nonuniform electric field. Moratz, Pitch-
ford, and Bardsley [2] studied the transport of electrons
through a background of nitrogen gas under the influence
of spatially varying electric field through a Monte Carlo
simulation. Nonhydrodynamic effects, i.e., a nonlocal
dependency of the electron transport and rate coefficients
on the ratio of the field strength to the neutral density
E /N, are observed. These authors assumed a priori that
the field distribution is linear with two regions of uniform
field which separate the varying field from boundary
effects. This field partition fixes the effect of the nonhy-
drodynamic situation on the electronic parameters of the
discharge in the varying electric field region. They ob-
served that the spatial evolution of the swarm in the de-
creasing field is different from that of the increasing field.

Beside Monte Carlo simulation techniques, the theoret-
ical study of cathode fall has been carried out, solving the
successive moments of the Boltzmann equation. Som-
merer, Lawler, and Hitchon [3] proposed a model for the
cathode-fall region of a dc glow discharge. The zeroth
and second moments of the Boltzmann equation are
solved for the electrons with a self-consistent electric
field. A single model with only two parameters (number
density and beam velocity) is assumed for the electron-
distribution function. Their paper presented an interest-
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ing necessary extremum condition that specifies a correct
electric-field distribution in cathode fall and the lower
field in the negative glow was imposed as 10 V/cm. The
results are in good qualitative agreement with Doughty,
Den Hartog, and Lawler [4]. Phelps, Jelenkovic, and
Pitchford [5] investigated a similar single-beam model us-
ing number-density and beam-energy equations. Som-
merer, Hitchon, and Lawler [6] modeled the electron be-
havior in the cathode fall of a helium dc glow discharge
with a self-consistent electric field using a ‘“‘convective
scheme.” The field predicted by the self-consistent calcu-
lations is in excellent agreement with optogalvanic exper-
iments.

For the study of the cathode fall and the negative glow
in a transitory discharge in CO,, Bayle, Vacquie, and
Bayle [7] proposed a self-consistent model based on the
continuity equations of the density of charge carriers
(electrons, positive and negative ions) of the moment
equation and the electron-energy equation, associated to
the equation of Poisson.

The deviation from the hydrodynamic conditions is
mainly a function of the gradients appearing in the
discharge, that is to say, field gradients as shown by
Monte Carlo simulation by Moratz, Pitchford, and
Bardsley [2] with increasing or decreasing fixed gradients
of field or by field and electron-density gradients as
shown in self-consistent models used to study the ioniza-
tion waves or the cathode-fall inception by Bayle and co-
workers [7-9].

For this reason, we present in this paper an extension
of the model proposed by Bayle, Vacquie, and Bayle [7]
by taking into account the effects of the field and density
gradients on the electron-energy-distribution function.
This model is tested in two experimental situations:
First, the study of the inception of the cathode zone in a
glow discharge in CO, up to the stationary state. Second,
the simulation of the experiment of Bastien, Wu, and
Marode [10] in which the inception of the cathode zone
in N, is followed to the stationary state. A good agree-
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ment is obtained between the experimental measurements
of the light emission and those obtained by the numerical
simulation.

II. MODEL

A. Physical hypothesis

The discharge model is a monodimensional one in
which the main effects of electron multiplication, drift,
and diffusion are functions only of the position between
the electrodes. The losses by radial diffusion are negligi-
ble. The space-charge electric field is obtained by solving
the monodimensional equation of Poisson. With the hy-
pothesis of a slightly ionized gas, the neutral gas density
remains constant. The neutral gas plays the role of an
infinite sink of energy and remains at the same tempera-
ture.

The (positive and negative) ions are in hydrodynamic
equilibrium with the electric field, hence the ionic move-
ment is simply linked to the local electric field by the mo-
bility relation. This hypothesis, used in our preceding pa-
pers, has been corroborated by Lawler [11]. He stated
that for the ions in helium, the parametrization of the ve-
locity by the mobility is correct for high electric field
zones and that in rapidly varying electric field, the ions
need some (1 to 6) mean free paths to reach the velocity
stated by the mobility versus the electric field. As we
work on heavier ions, and with the fine spatial mesh used
for solving the equations, the ions are supposed to be in
equilibrium with the electric field.

We choose to simulate the discharge by means of a
mixed microscopic macroscopic formalism, extrapolated
from that developed in the previous papers by Bayle and
co-workers [7-9]. It is based on the equations of the first
moments of Boltzmann equation, continuity equations
for electronic and ionic densities, the momentum equa-
tion, and the electron-energy equation, but the collisional
operators for ionization, excitation, momentum transfer,
and energy transfer are a function of the local electron
energy and some of them are explicitly written from the
microscopic distribution function. This formalism
preserves all the benefits of the hydrodynamic formalism
particularly to find self-consistent solutions which are
more difficult to obtain through particles or microscopic
methods. It is clear, however, that the quality of results
obtained is highly functional of the coupling between the
microscopic scheme and the macroscopic scheme and of
the way for the nonhydrodynamic condition to be taken
into account both in the microscopic and macroscopic
points of view. In hydrodynamic conditions, the energy
reached by an electron along a mean free path can be
considered as instantaneously lost by collisions. There is
a direct equilibrium between energy gain and loss and the
energy of the electrons is directly linked to the electric
field, the collisional frequencies being completely defined
by the knowledge of the local electric field. In the nonhy-
drodynamic condition, the energy gained by an electron
is not instantaneously lost by collisions. All is going on
as if a relaxation time or a relaxation length exists to
reach equilibrium between energy gain and loss. Two pa-
rameters are significant to characterize the divergence

from the hydrodynamic situation: the ratio of the electric
field on neutral molecules density E /N and the gradients
(mainly the electron density gradient). This implies that,
in nonhydrodynamic conditions, the use of classical mac-
roscopic coefficients, measured at very low current densi-
ty and in spatially invariant electric fields, is called into
question and these coefficients have to be estimated. The
collision frequencies appearing in the three moment equa-
tions have to be parametrized by average electron energy
rather than explicitly by E/N. However, it is necessary
to separate the collisional processes induced by all the
electrons (as momentum and energy exchanges) from
those due to the part of electrons whose energy is greater
than a given threshold (as ionization and excitation pro-
cesses). It is obvious that the nonequilibrium effects
affect more the macroscopic coefficients that depend on
the tail of the distribution function and less those depend-
ing on the bulk of this distribution function. So, the col-
lisional frequencies of momentum transfer and energy
transfer are less modified by the nonequilibrium between
electrons and electric field than the collisional excitation
and ionization frequencies. This implies that, if the ex-
pressions of the ionization and excitation source terms
need specification of the distribution function, i.e., a mi-
croscopic representation of the discharge, the expressions
of collisional source terms in momentum and energy
equations which depends mainly on the bulk of the distri-
bution function, can simply be described by a macroscop-
ic approach.

B. Nonequilibrium distribution function

The cathodic zone is a zone with strong gradients of
electric field and electronic densities. These gradients
greatly modify the electron distribution function. This
dependence of the electron-energy distribution function
(EEDF) with the gradient of electron densities has largely
been confirmed by experimental work for pulsed and
steady streams by Wedding, Blevin, and Fletcher [12] and
Wedding and Kelly [13]. Using photon-flux techniques,
they studied the spatial variation of the relative excita-
tion rates for two electronic states of molecular nitrogen.
The ratio of these rates shows a spatial dependence which
is explained in terms of an electron concentration gra-
dient expansion of the energy distribution function. Tho-
mas [14] and Kumar, Skullerud, and Robson [15] have
shown that in Townsend discharges, the EEDF is a func-
tion of the ratio of electric field strength on the concen-
tration of the neutral gas molecule density and also a
function of the local gradient of electron concentration.
Kumar, Skullerud, and Robson [15] have formulated the
distribution as an expansion of a series of powers of rela-
tive gradient of electron densities. The expression of the
EEDF as an expansion of a series is not easy to use in a
numerical scheme for the calculation of source terms, for
example. Lucas [16] gave an analytical formulation of
the EEDF (including the effect of the relative gradient of
electron densities), which is easy to use for the calculation
of ionization frequencies. This relation is obtained from
an approached solution of Boltzmann’s equation, with
the hypothesis of a stationary discharge without space
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charge, i.e., at constant electric field and temperature. In
our numerical simulation, we use this relation even if its
use for the study of the spatiotemporal evolution of the
cathodic zone seems inadequate. As the direct experi-
ment determination of the EEDF is generally impossible,
the validity of an EEDF may be stated by its macroscopic
results, i.e., by the variations of the diffusion coefficient
and of the diffusion velocity that indirectly show the spa-
tial change in the EEDF. More indirect evidence of the
variation of EEDF are the values of the ionization and
excitation frequencies which are greater when the elec-
tron density gradient is negative (or smaller when posi-
tive) than the values calculated as a function of E/N
alone. Wedding stated in his work that the EEDF is a
function of the gradient of electronic density as well in
pulsed streams as in steady streams. Then, we use the
Lucas formulation, and the validation check point of this
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method is made by the simulation of the cathode-zone
evolution and the correlation with the experimental re-
sults. Lucas proposed a distribution function that
specifies the role of the gradient by

e 1 1 9

Jile)=folelexp | = 0o eE n, ox ‘e

(1)

where f(€) is a stationary solution without gradient.

As the bulk of the distribution function is nearly
Maxwellian and as the perturbations mainly affect the
tail, we chose to express f(e) as a Maxwellian function
at the temperature 7T, defined by the energy equation.
The distribution function f; is normalized by

[ Verende=1, 2)
then, the EEDF of Lucas is

—3/2
- 2 an kT . kT
Sile)=1=e 1 dn kT exp | e 1 dn kT 3)
14— KL 1+ XL
n ox eE n ox eE

This EEDF looks like a Maxwellian distribution function
in which the temperature k7T has been replaced by
kT /[1+(kTVInn)/eE]. In other words, Lucas’s EEDF
is equivalent to a Maxwellian EEDF whose mean energy
is lower than kT in the cathode-fall region where the gra-
dient is positive. In these conditions, the source terms
(ionization, attachment) playing a role in the continuity
equation for electron and ion densities and the excitation
term used in the secondary effects at the cathode are for-
mulated by

S{(Tene, N)=Nn, [ “o;(e)w(e)f (e)de , @)

where o0 ;(¢) is the cross section for the collisional process
involved (ionization, attachment, excitation).

From this point of view, the mean energy used for the
calculation of the ionization and excitation source terms
appears as lower than the mean energy calculated by the
energy equation. This is linked to a “‘corrected” effect of
the density gradients. The two values of the mean energy
are the same when

k7
Inn <<1 ( )

In this case, Lucas’s EEDF is equivalent to a Maxwellian
EEDF.

In the analysis of the results of our simulation, it will
appear that the use of this EEDF gives very interesting
results in good agreement with the experimental results.
This is probably linked to the fact that the cathode zone
in molecular gases is different from that of atomic gases,
mainly because of the great numbers of excited stated (ro-
tational, vibrational, and electronic states). This implies
that the specific energy losses appearing in atomic gases
in a well-determined energy range cannot appear in
molecular gases, such as those studied in this paper. In

[

molecular gases, the energy losses are more distributed
due to the broadness of the elastic and inelastic cross sec-
tions. A distribution function with a Maxwellian shape
and taking into account the gradient effects may be a
good representation for the electrons. When the electric
field and the density gradient are too weak, the term
(1/eE)(1/n,)(3n,/3x) may have an artificial weight in
the distribution function stated by Lucas, without con-
nection with the nonhydrodynamic situation. For these
conditions of weak local electric field, we assumed that
the elastic collisions play a more major role than the in-
elastic collisions and thus the distribution becomes
Maxwellian. In this case also, the temperature is that de-
duced from the energy equation and this involves none-
quilibrium in the expression of the distribution function.

C. General formalism

The formalism, used in this work, comments on the
transport equations for densities (electrons, positive and
negative ions) and momentum and energy equations for
electrons only. In these equations, the operators for
momentum and energy transfer are stated macroscop-
ically as previously done by Bayle and co-workers [7-9]
whereas the ionization and excitation source terms are
directly calculated by means of the distribution function
and of the corresponding cross section.

The effects of the density gradients are taken into ac-
count, in a macroscopic point of view, in the moment
equation by d(n,T,)/dx and in the energy equation by
d(n,T,u,)/dx and in a microscopic point of view by the
modification of the distribution function. Some examples
of the role of these gradients on nonequilibrium are
shown in [8].
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1. Continuity equations

For electrons,
on,  dln.u,)
at ax

For negative ions (for CO, only),

Sion_Satt . (6)

on~ , dn"u") _
ot * x =S -

For positive ions,

on, dn,u,)
&  ax | Sens &

n,, n_, n, are, respectively, the electron, negative-ion,
and positive-ion densities. u,, u~, u, are the corre-
sponding velocities.

Sion> Sai: are the collisional source terms for ionization
and attachment (for CO, only), defined by Eq. (4) from
the distribution function defined versus the electronic
temperature 7, as deduced from the energy equation,
from the relative local gradient of electron density, and
from electric field.

2. Momentum equation

The positive and negative ions are assumed to be in
equilibrium with the electric field. Thus, their velocities
are settled versus the electric field from the drift experi-
mental results.

As the cathode zone is greatly nonhydrodynamic, the
momentum transfer equation is used to calculate the elec-
tron velocity, as explained in [7]. This equation takes Eq.
(6) into account:

du, By _ e e AnT)
ot ¢ 9x m, m,n,  Ox
Sion—Sax  (VE+VI(m,w,)
e ", - m,n, '

9)

(Ve+Vi)(m,w,) is the operator for momentum transfer in
elastic and inelastic collisions.

As explained in [7], this operator has the same depen-
dence on temperature as in the hydrodynamic state, but
the temperature involved is that deduced from the energy
equation. In the hydrodynamic situation, i.e., with equi-
librium, the operator for momentum transfer is

(VE+Vi)m,w,)=n,m,u,v,(E/N) , (10)

v,(E/N) is the collision frequency, a function of E /N,
and is linked to mobility by

1
E/N)=-%—"—
velE/N)= 2= BN
or (11)
V(T )= !

m, p(¥(T,)/N)

T,, is the equilibrium temperature (or static temperature).

In the nonhydrodynamic situation, the same relation is
used, but the collision frequency is a function of the true
temperature T,, i.e., the temperature deduced from the
energy equation:

1
w(T,)
N

Vv (T,)=—

m,

He

(12)

and thus the operator for momentum transfer is
(Ve+VH(mw,)=n,mu,v(T,) . (13)
The equation of momentum transfer becomes

du, du, :L[E_L(aneTeue)

ar  “oax m n,  ox

Si,—S
—ue—‘9“n—f‘i—uev,_,(w<n)) : (14)
e

3. Energy equation

This equation expresses, from a macroscopic point of
view, the nonequilibrium, i.e., the nonhydrodynamic state
of the discharge. The electron-energy equation deduced
from the Boltzmann equation is

aT, T,

u _ 1 aneTeue
ot ¢ ox

e
n, ox

3
2

%Te(‘sion _Satt)

— L (v viimauw?),
nE
where (V¢+ V/)(1mw?) is the energy-transfer operator.
In the hydrodynamic situation, this operator states

that the balance between energy gain and energy loss is
achieved. Thus,

1, E 0y =2T,(Sjon—Sa) H(VEHVI(EIm wl) . (16)

T, is the equilibrium static temperature, v, is the drift
velocity, and E; is the uniform and static electric field.

In the hydrodynamic situation, there is a direct
correspondence between electric field and temperature.
T,=f(E;) or E=W¥T,) and the operator
(Ve+Vi)(1m,w?2) can be expressed as a function of this

static temperature:
(Ve+ V) (Lm,w2)=n,W(T, v, (¥(T,))
—%Tes[sion(Tes)_San(Tes)] . (17)

If the same formal relation (towards energy deduced
from the energy equation) is assumed in the nonequilibri-
um situation (or nonhydrodynamic situation) we obtain

(Ve+ V) (im,w2)=n,W(T,)v,(¥(T,))
_%Te[Sion(Te)dSatt(Te)] (18)
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and the energy equation becomes

3 | 97T, " aT, | 1 0n,T,u,)
2| ar Meax | e n, ox
—W(T, v (W(T,)) . (19)

4. Electric field

The electric field is calculated from Poisson’s equation,

OE _ e o
ax 80(n+ n,—n_), (20

and the field is assigned to verify the relation

Vo= JEtoax . 1)

V¢ is the voltage applied to the gap and is defined in the
problem.

This condition is always respected in our simulation
even if there is local weak field inversion, on the side of
the negative glow, in CO, as well as in N,.

The improvement of numeric schemes, compared to
previous work [7], makes it possible to obtain a field com-

pletely self-consistent with the charge carriers even if
field inversion zones appear which are difficult to analyze.
Bayle, Vacquie, and Bayle [7] set the electric field value in
negative glow to 10 V/cm to avoid field inversion and the
same process has been set up again (with the same field
value) by Sommerer, Lawler, and Hitchon [3].

5. Boundary conditions

At the cathode. The cathode is considered as an elec-
tron source through ionic and photonic impact,

Je(O,t)=y+J+(0,t)+yphf0dSexc(x,t)dx , (22)

with ¥ . =5X 1072 and Yph= 10~ * (the average values are
equal for CO, and N,).

The excitation source term S, (x,?) is calculated from
Eq. (4) by means of cross sections. For CO,, we used the
formula already given in [7] with the cross sections ob-
tained by Kucukarpaci and Lucas [17].

For N,, we chose the cross sections given by Hartmann
[18] and approximated by the following relation.

First negative system.

3
[os- (1078 cm?)]= 3 K;(e;—w,)[Ale—w;, ) —Ale—wy )]+ K ,Ale—w,) ; (23)

i=1

€ is the electron energy in electron volts and A is the
Heaviside step function with

K,=0.4507 K,=0.146 67 K;=0.036 67 K,=15
w, =18.7 w,=—29.318  w,=309.69 w,=63.9
wy, =18.7 w,, =41.9 w;, =63.9

w1b=41,9 w2b=63.9 w2b=100

Second positive system.

[o,s+ (107 cm?)]

4
= F K;(g;—w)[Ale—w;, ) —Ale—wy)], (24)

i=1

with

K,=3.9 K,=136 K,=0.14286  K,=0.0135
w, =11 w,=—29.318  ws=2309.69 w, =180.76
w, =11 w,, =14 wy, =19 Wy, =19
w,b=14 w2b=19 wa:4O Wyp = Wy

The total source term is obtained by combining the
second positive and first negative source terms

Sexe=3.58,5+ +1.55 ¢ . (25)

As the cross sections only take into account the 0-0 tran-

sition, we balance the source terms to introduce the other
transitions.
At the anode. The positive-ion density is given by

no(d,t+At)=n_(d,t)+Sn(T,,n,,N,t +At/2)At .
(26)

Remark. The relation T,(x,t)=W(E(x,t)/N) and the
drift ionic and electronic velocities are the same as those
used in [7] for CO, and [9] for N,.

Compared to the results established in [7], the extrac-
tion conditions for secondary electrons have been slightly
modified. The energy of the emitted electrons is assumed
to be equal to 10 eV, according to a series of preceding
tests [9].

6. Initial conditions

The aim of this section is to settle the way the cathode
region is established from a transitory state to obtain the
stationary state of a glow discharge.

For the two analyzed gases, an initial decreasing elec-
tric field is assumed, defined as follows:

(a) In CO,. The initial conditions that correspond to
some tens of nanoseconds after the application of the
voltage impulse are those of experimental work of Cobine
[19], Ivanchenko and Shepelenko [20], and Francis [21].

The initial electric field is

E(x)=(E —Ec)g +E. . 7

E-=12400 V/cm is the electric field at the cathode,
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E, =500 V/cm is the electric field at the anode,
d=6.4X10"2 cm is the cathode-region length, P is the
pressure P =20 Torr, n,(x) is the electron density, with

n,(x)=n,(0)exp(ax) , (28)
with  n,(0)=10""? Ccm™3, &@=71.956 cm .
The positive-ion density is

n+(x)~eo%f—=1.65><10_8 Cem ™3, (29)
and negative-ion density

n_(x)~0. (30)

(b) In N,. The electric field is defined by the same rela-
tion with E-=563.3 V/cm as the electric field at the
cathode, E , =5.7 V/cm as the electric field at the anode,
d =2 cm is the gap length, and P=1 Torr.

Remark. Bastien, Wu, and Marode [10] explain that in
their experiment the voltage presents a low overshoot
after which the voltage reaches the value pointed in their
paper. Simulating their experiment, we found that this
voltage corresponds to a stabilization voltage, i.e., the
voltage corresponding to a stationary state of the
discharge. However, for the inception of the discharge
we found that this overshoot is necessary. We try
different values for the overshoot (in amplitude and dura-
tion) to obtain the best agreement between the experi-
mental and the calculated current when the stationary
state is reached. The voltage V; applied to the gap is an
input function of time as shown in Fig. 9. The ionic and
electronic densities are defined by a mean value of the
electric field

n.(x)=n,(0)exp(ax) , (31

with 7,(0)=1.212X10""* Cem™3, &=2.902 cm™},
n,(x)=~egy(dE /3x)~=~2.473X10" M cm ™3,

7. Numerical procedure

The applied mathematical model is composed of the
ensemble of a set of partial differential equations. We
have used as a numerical technique the method of flux-
corrected transport described by Boris and Book [22,23].
Although this procedure has the best performance in
treating such types of problems, it can present some
difficulties especially concerning the anode and cathode
boundary conditions when used in the analysis of gas
discharges, as treated in detail by Morrow [24]. Howev-
er, the stability of the method is remarkable, as compared
to the method of characteristics, and permits in particu-
lar the treatment of delicate problems such as the inver-
sion of electric field which appears in the negative glow.

III. RESULTS
A. Analysis of results in CO,

A comparison is made between the results of the simu-
lation with the two distribution functions, that of Lucas
and that of Maxwell, obtained with the same experimen-
tal conditions and with the same numerical procedure.

We will analyze the differences between the main parame-
ters of the discharge. :

In a qualitative approach, a similar evolution of the
fundamental values of the discharge is obtained. This
means that a Maxwellian distribution function is a good
approximation if the temperature is correctly estimated
(by means of the energy equation, for example).

In a quantitative approach, the results are different.
The spatiotemporal evolution of the discharge shows
great local differences.

Figure 1 shows a comparison between the spatiotem-
poral evolution of the electron density obtained with the
two formalisms. The use of a Maxwellian distribution
function (dashed line) gives rise to higher gradients that
enhance ionization in the transition zone between the
cathodic fall and the negative glow. All nonhydro-
dynamic phenomena become more pronounced. The
choice of a Maxwellian distribution leads to a forced
over-evaluation of nonequilibrium effects. This artificial
overestimation of these nonequilibrium effects gives rise
to an extremely unsteady discharge with very quick tem-
poral evolution and diverging without reaching steady
state after 72.5 ns. The use of the Lucas formalism gives
rise to weaker gradients. The steady state of the
discharge is reached after 250 ns. The calculations have
been continued to 350 ns with a time step Az =2.5X 1072
ns; the calculation is very stable. The curves obtained
during this calculation superimpose together very well.

The stationary state reached by the discharge is
characterized by Townsend’s criterion, and the mainte-
nance condition for stationary state is

10° 6 ] | 1 | | |

L4

o

—
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@
sl 0 opul

T T

T
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w1 gl
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006
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FIG. 1. Spatiotemporal evolution of electron density (in
CO,), comparison between the simulation with the Lucas distri-
bution function (FL) and with the Maxwell distribution function
(FM). (Curve 1) Initial conditions: identical for the two formal-
isms. The formalisms using the Lucas distribution function
(solid lines); (2) =50 ns, (3) =100 ns, (4) t =150 ns, (5) t =200
ns, (6) ¢t >250 ns (stationary state). The formalism using the
Maxwell distribution function (dashed lines); (7) t=25 ns, (8)
t=50ns, (9) t=72.5 ns.
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Y4 foda[(vx Jexp [fox [ai(x’)—aa(x') }dx’ }dx +7/phf0daexc(x)exp {fox [a,-(x’)—aa(x’) }dx’ ]dx=1 R (32)

with «; the ionization coefficient, a, the attachment
coefficient, and a... the excitation coefficient. These
coefficients are deduced from the corresponding frequen-
cies divided by the electron velocity. This formula ap-
plied to our simulation gives 0.94 for CO, for conditions
of Fig. 2. Figure 2 shows the spatial evolution of the pa-
rameters in the discharge having reached the stationary
state with a self-consistent model using a Lucas distribu-
tion function. Different zones are easy to recognize: the
cathodic fall (CF) with an electric field which decreases
quasilinearly and the negative glow (NG) with a weak
electric field. Imbalance between the electron energy and
the electric field is clear, particularly in the CF-NG tran-
sition and in the NG where the electron temperature is
clearly higher than that deduced directly from the local
electric field.

From the state of the discharge defined in Fig. 2, we
tried to compare the Lucas distribution to the Maxwell
distribution. Both of these distribution functions are cal-
culated involving the temperature deduced from our
model (temperature values given in Fig. 2). This compar-
ison allows an estimation of the role of electron density
gradients and of the electric field on the electron-energy
distribution.

Figure 3 shows the comparison between the Maxwell
and Lucas distribution functions when the discharge
reaches a stationary state, the distribution functions
showing the same differences in a transient state. This
comparison on the microscopic state has been made in
referenced points (1)—(4) in Fig. 2. In these points, the
Maxwellian distribution function is calculated with the
value of the temperature given in Fig. 2.

There is a strong spatial dependency of the distribution
function (whatever the distribution function, Lucas or
Maxwell) versus the distance from the cathode, linked to
the local electric field and density gradient. The evolu-
tion of the distribution function shows that three zones
can be distinguished.

(I) A first zone near the cathode where electrons are
emitted from the cathode with a mean energy of 10 eV
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FIG. 2. Spatial distribution of the main parameters of the
stationary discharge (¢ =350 ns).

are greatly accelerated by a strong electric field. In spite
of a strong gradient of density in this zone, this gradient
plays a negligible role in the distribution function. Since
the high value of the electric field will tend to eliminate
the effect of (1/n,)dn,/0x as explained in Eq. (1), the
electrons emitted by the cathode are mainly influenced by
the electric field. This zone can be defined as an adjust-
ment zone for secondary electrons emitted by the
cathode. In this zone of strong acceleration, the elec-
trons are mainly fast ones. On this short distance, the
elastic and inelastic collisions are not able to settle a pro-
cess of collisional losses that could balance the gains in-
duced by the electric field.

(2) A second zone in the negative glow, on the anode
side, is a zone of weak electric field with weak electron
mean energies. The gradient of electron density is nearly
equal to zero and the density of electron current is spa-
tially constant. The two distribution functions (Maxwell
and Lucas) are very similar with a maximum of electrons
in the bulk of the distribution function. This shows that
the electron energy gained in the cathode fall is lost by
the elastic collisional processes as will be detailed in the
analysis of N, discharge.

(3) An intermediate zone which is a strong gradient
zone. All the parameters of the discharge (electric field,
densities, energy) vary greatly. In this zone, both the
electric and the electron energy are very high. The ener-
getic balance of electrons depends on two mechanisms:
The first one is the inelastic collisions, and it is clear that
ionization plays a great role in inducing a very strong
electron growth. The second one involves strongly aniso-
tropic elastic collisions in which the electron density gra-
dient occurs as suggested by Saelee and Lucas [25] and
Wedding, Blevin, and Fletcher [12]. These effects are
clearly demonstrated by the Lucas distribution function
which shows a deficit of high-energy electrons and an ex-
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FIG. 3. Comparison between the distribution function of the
Lucas (solid line) and the Maxwell distribution functions
(dashed line) at points (1), (2), (3), and (4) of Fig. 2.



47 SELF-CONSISTENT MODEL FOR THE NONEQUILIBRIUM ... 619

cess of low-energy electrons whereas the Maxwell distri-
bution function is inefficient in presenting the whole elas-
tic and inelastic collisions.

Figure 4 shows the spatiotemporal evolution of the
electron velocity obtained by modeling the discharge with
the Lucas distribution function. These curves are com-
pared with the corresponding ones obtained using the
Maxwellian distribution function (dashed line).

A high velocity is obtained near the cathode where the
field effect is more important. At the transition zone be-
tween the cathode fall and the negative glow, the velocity
is strongly reduced (by 2 orders of magnitude). This
strong reduction in the velocity acts consequently on the
discharge: The large number of electrons arriving from
the cathode fall (secondary emission being followed by
amplification) gather at the beginning of the negative
glow as the velocity is too low to drain them and thus an
excess of negative charge is observed. This point consti-
tutes the fundamental difference in the discharge result-
ing from the use of the two models of distribution func-
tions.

With the Lucas distribution function, which seems
more accurate, the electron density gradient induces an
enhancement of the velocity in the negative glow. The
electrons arriving from the cathode fall are swept away
toward the anode with a correct velocity. There is no
charge gathering. The discharge is stabilized and be-
comes stationary when the electron velocity in the nega-
tive glow is high enough to sweep away the electrons,
avoiding a negative charge storage. With the Maxwellian
distribution function, there is a strong decrease of the ve-
locity at the transition between the cathode fall and the
negative glow. There is a strong charge increase, leading
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FIG. 4. Spatiotemporal evolution of electron velocity.
(Curve 1) Initial conditions. The formalism using the Lucas dis-
tribution function (solid lines); (2) #=50 ns, (3) t=100 ns, (4)
t=150 ns, (5) t=200 ns, (6) t>250 ns (stationary state). The
formalism using the Maxwell distribution function (MF)
(dashed lines); (7) t =50 ns, (8) t=72.5 ns.

to a numerical divergence and the quality of being physi-
cally unable to give a stationary state.

The electron density variation (Fig. 1) shows clearly
that the stationary state is represented by the curves. In
these curves, there is a constant increase of the density
induced by multiplication in the high field zone and a
zone of constant density which represents the balance be-
tween the two-electron flux. With the Maxwellian func-
tion, an electron maximum appears at the transition be-
tween the cathode fall and the negative glow, moves with
this transition, and is amplifying with time, showing a
charge increase due to the imbalance between the elec-
tron fluxes arriving from cathode fall and those penetrat-
ing the negative glow.

Figure 5 shows the evolution of the electronic tempera-
ture. Two zones appear as in the electron velocity, a zone
of high electron temperature near the cathode and a zone
of low temperature near the negative glow. As for the
other parameters, the transition between the two zones is
smoother with the Lucas distribution function. The tem-
perature in the negative glow is not equal to zero.

Figure 6 shows the evolution of the electric field. The
classic variation is obtained with a quasilinear decrease in
the cathode fall, and a very weak electric field in the neg-
ative glow. Two observations can be made. The first one
concerns the spatial variation of the electric field com-
pared to that of the electron temperature. In the transi-
tion between the cathode fall and the negative glow, the
temperature decreases more weakly than the electron
field. A non-null energy exists in the beginning of the
negative glow, showing an imbalance effect, partially slit-
ting the electrons from the electric field. The local elec-
tron energy depends not only on the local values of the
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FIG. 5. Spatiotemporal evolution of electron temperature.
(Curve 1) Initial conditions. The formalism using the Lucas dis-
tribution function (solid lines); (2) t=50 ns, (3) t=100 ns, (4)
t=150 ns, (5) t=200 ns, (6) ¢ >250 ns (stationary state). The
formalism using the Maxwell distribution function (dashed line);
(7) t=72.5 ns.
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FIG. 6. Spatiotemporal evolution of electric field. (Curve 1)
Initial conditions. The formalism using the Lucas distribution
function (solid lines); (2) =150 ns, (3) t =100 ns, (4) t =150 ns,
(5) t =200 ns, (6) 6 > 250 ns (stationary state). The formalism us-
ing the Maxwell distribution function (dashed line); (7) t=72.5
ns.

electric field but also on the local values of the gradients
of  densities (1/n,)0n,/8x and of  energy
(0n kT, /0x );(0n,kT,u,/dx). This has already been ob-
served in [7] and [9].

The use of the Lucas distribution function which, in-
cluding in its formulation the gradient effects, enhances
the differences between the field and the temperature evo-
lutions.

The second observation concerns the field inversion.
This inversion is weak with a maximum value of about 60
V/cm lasting for 40—-110 ns. After this, the electric field
again becomes positive. It is interesting to notice that
field inversions have been noted in experimental works (in
gases other than those studied here) by Warner, Conner,
and Woods [26] and by Den Hartog, Doughty, and
Lawler [27]. The theoretical results obtained in this work
confirm these observations.

The scale of Fig. 5 does not permit the perception of
the inversion which is easier to analyze in Fig. 7.

The velocity of the positive ions, which is directly pro-
portional to the electric field (v, =p  E), is reversed at
t =50 ns and t =100 ns. Of course, as the electron veloci-
ty is deduced from the momentum equation there is no
inversion on it.

This field inversion, which is transitory with the Lucas
distribution function, remains permanently with the
Maxwellian distribution function and enhances the
charge storage effect, reducing the velocity in the transi-
tion zone between the cathode fall and the negative glow.
It is necessary to remark that the decrease of the electric
field is weaker with the Lucas distribution function and
allows a better draining of the positive ions toward the
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FIG. 7. Spatiotemporal evolution of current density of posi-
tive ions. The formalism using the Lucas distribution function
(solid lines). (Curve I) Initial conditions, (2) t =50 ns, (3) t =100
ns, (4) t=150 ns, (5) t=200 ns, (6) ¢ >250 ns (stationary state).
The dashed lines in curves 2 and 3 point out a change in ion
current direction (and thus an electric field local inversion too
weak to be observed in Fig. 6).

cathode and thus promotes the stationary conditions.

The efficiency of the good draining for electrons and
positive ions in the inception and the maintenance of the
stationary state appears clear in Fig. 8 where the electron
current density is noticeably steady in the negative glow
and the positive current is steady in the cathode fall.
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FIG. 8. Spatiotemporal evolution of electron current density.
The formalism using the Lucas distribution function (solid
lines). (Curve 1) Initial conditions, (2) =50 ns, (3) t=100 ns,
(4) t=150 ns, (5) t =200 ns, (6) ¢ > 250 ns (stationary state).
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B. Analysis of the results in N,

After testing the presented model composed of the
macroscopic transport equation and the Lucas micro-
scopic distribution function, in simulating the discharge
in CO,, we test the validity of the model in the case of ni-
trogen. Actually, nitrogen gas has well-known collision
cross sections as well as macroscopic coefficients, and
simulating the discharge in nitrogen by a theoretical
model can be a good test for the validity of such a model.
We simulate the experiment of Bastien, Wu, and Marode
[10]. In this experiment, the authors have studied the
luminous emission of nitrogen discharge at low pressure.
The experimental conditions are pressure P=1 Torr, the
gap is 2 cm, the electrode diameter is 45 mm. They mea-
sured the electric current, the voltage, and the optical
luminous emission in the gap. Since the pressure is low,
the cathodic region (cathode fall and negative glow) is ex-
tended all over the gap. The analysis of light emission
concerns the packet centered at A=3914 A of the nega-
tive system B ZHw=0—X 2Zg(v'=0) and that
A=3577 A of the second positive system
C’M,(v=0)—B M (v'=1). Our simulation of the ex-
periment is based on the described model (hydrodynamic
equations plus the Lucas distribution function). The data
concerning the gas pressure, gap distance, and the ap-
plied voltage are given in the simulation. The quantities
subjected to correlation are the total electric current and
the spatial luminous emission which is computed with
Eq. (5). The comparison of these two values induces
correlations strong enough to state that the other values
(charge carrier densities, electronic velocity, and elec-
tronic temperature) are accurate if these two values fit
with the experimental ones.

The stabilization voltage is 540 V. The overshoot con-
ditions as estimated in the simulation will give a theoreti-
cally stationary discharge current of I,;, =25 mA as
shown in Fig. 9. It is worthwhile to state that the value
of the deviation of the theoretically stationary current
with respect to that measured experimentally varies only
weakly around an average value which is the experimen-
tal one. The time elapsed until the stationary discharge is
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FIG. 9. Temporal voltage (a) and current (b) evolutions in
N,. The voltage is experimental data. The current is calculated
by the model with the Lucas distribution function.
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FIG. 10. Spatiotemporal evolution of light emission

(A=3577 A). The open circles denote experimental values from
[10]; (Curve 1), initial conditions of the simulation, (2) =3 us,
(3) t =13 us, (4) t =20 us (stationary state).

established in the simulation model depends on the initial
conditions. On the contrary, the simulated spatial light
emission does not depend on the theoretical initial condi-
tions and seems to depend only on the discharge data
(i.e., pressure, gap length, voltage). Figure 10 shows how
the luminous emission of the first negative system evolves
towards being stationary while curves 1-4 correspond to
points 1-4 in Fig. 9. The correspondence between the
position of the simulation maximum luminosity and the
experimental one can be observed clearly. The difference
in the spatial extension between the theoretical and ex-
perimental luminosity curves may be explained from a
theoretical point of view. The choice of the Lucas distri-
bution function yields a good average microscopic behav-
ior of the nonequilibrium electron isotropic (or bulk) dis-
tribution but it does not consider the different specific ex-
citation mechanisms and the anisotropy of the distribu-
tion. Since we have obtained good agreement with exper-
iment concerning both the electric current and the spatial
luminous emission it will be interesting to consider other
quantities in the stationary discharge. Figure 11 gives
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FIG. 11. Spatial evolution of the main parameters in the
discharge at stationary state (point 4 of Fig. 9) in N,.
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the spatial distribution of the electric field, electron tem-
perature, density, and drift velocity at the stationary
state, the maintenance condition (32) gives 0.92 for this
situation. Here we can locate the same characteristic
zones as in the CO,.

IV. CONCLUSION

The formalism proposed in this paper allows one to
simulate successfully the inception of the cathode zone
up to the steady state in CO, and N, taking into account
nonequilibrium between the electrons and the field. This

shows that it is possible to study discharges in nonhydro-
dynamic situations by means of a formalism deduced
from the successive moments of the Boltzmann equation.

The use of the collisional operators sensitive to the
shape of the distribution function allows one to simplify
the formalism but preserves all its efficiency. Those of
the operators which mainly depend on the bulk of the
distribution function are stated macroscopically, that is
to say, simply. Those which depend on the tail of the dis-
tribution function (ionization, excitation) are microscopi-
cally stated by means of a distribution function taking
into account the gradient effects in the discharge.
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